Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.044
1.
J Biomed Sci ; 31(1): 46, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725007

BACKGROUND: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. METHODS: We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. RESULTS: Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. CONCLUSION: Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.


Brain-Derived Neurotrophic Factor , Cathepsins , Cognition , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Cathepsins/metabolism , Cathepsins/genetics , Cognition/physiology , Receptor, trkB/metabolism , Receptor, trkB/genetics , Male , Mice, Knockout
2.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583640

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Axonal Transport , Brain-Derived Neurotrophic Factor , Charcot-Marie-Tooth Disease , Disease Models, Animal , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism , Humans , Mice, Transgenic , Muscle, Skeletal/metabolism , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mutation
3.
Proc Natl Acad Sci U S A ; 121(17): e2303664121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38621124

Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.


Brain-Derived Neurotrophic Factor , Calcium , Brain-Derived Neurotrophic Factor/metabolism , Calcium/metabolism , Synaptic Transmission/physiology , Synapses/metabolism , Calcium Channel Blockers/pharmacology , Calcium, Dietary , Receptor, trkB/genetics , Receptor, trkB/metabolism , Glutamates/metabolism
4.
Biomolecules ; 14(4)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38672461

Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.


Brain-Derived Neurotrophic Factor , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Animals , Humans , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mice , Mice, Knockout , Energy Metabolism/genetics , Obesity/metabolism , Obesity/genetics , Polymorphism, Single Nucleotide
5.
Zhen Ci Yan Jiu ; 49(4): 391-397, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649207

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the rats' behavior and the transforming precursor of brain-derived neurotrophic factor (proBDNF) into mature brain-derived neurotrophic factor (mBDNF) in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia-reperfusion (IR), so as to explore its mechanisms underlying improvement of learning and memory ability. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 6 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (1 Hz/20 Hz) was applied to GV24 and GV20 for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria 24 h after modeling and after intervention. Morris water maze test was used to detect the learning and memory function of the rats. TTC staining was used to evaluate the cerebral infarction volume on the affected side. The protein expression levels of proBDNF, mBDNF, tissue plasminogen activator (tPA), tyrosine kinase receptor B (TrkB) and p75 neurotrophin receptor (p75NTR) in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score, the percentage of cerebral infarction volume and the expression levels of proBDNF and p75NTR protein in hippocampus were increased (P<0.01), while the times of crossing the original platform and the total distance in the target quadrant, the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were decreased (P<0.01, P<0.05) in the model group. Compared with the model group, the neurological function score, the percentage of cerebral infarction volume, and the expression levels of proBDNF and p75NTR protein in hippocampus were decreased (P<0.01, P<0.05), while the times of crossing the original platform, the total distance in the target quadrant, and the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were increased (P<0.05, P<0.01) in the EA group. CONCLUSIONS: EA can alleviate learning and memory impairment in IR rats, which may be related to its function in up-regulating the expression of tPA protein and promoting the transformation of proBDNF to mBDNF, thus improving the synaptic plasticity.


Brain Ischemia , Brain-Derived Neurotrophic Factor , Electroacupuncture , Memory Disorders , Neuronal Plasticity , Protein Precursors , Reperfusion Injury , Animals , Humans , Male , Rats , Acupuncture Points , Brain Ischemia/metabolism , Brain Ischemia/therapy , Brain Ischemia/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Hippocampus/metabolism , Learning , Memory , Memory Disorders/therapy , Memory Disorders/metabolism , Memory Disorders/etiology , Rats, Sprague-Dawley , Receptor, trkB/metabolism , Receptor, trkB/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Reperfusion Injury/genetics
6.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Article En | MEDLINE | ID: mdl-38592583

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Brain-Derived Neurotrophic Factor , Lung Neoplasms , Mice, Knockout , Receptor, trkB , Receptors, Tumor Necrosis Factor, Type II , Schizophrenia , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Humans , Mice , Schizophrenia/metabolism , Schizophrenia/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptor, trkB/metabolism , Receptor, trkB/genetics , A549 Cells , Male , Behavior, Animal/drug effects , Cell Proliferation/drug effects , Mice, Inbred C57BL , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism
7.
Sci Signal ; 17(834): eadn4556, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687826

Signaling mediated by brain-derived neurotrophic factor (BDNF), which is supported by the postsynaptic scaffolding protein PSD-95, has antidepressant effects. Conversely, clinical depression is associated with reduced BDNF signaling. We found that peptidomimetic compounds that bind to PSD-95 promoted signaling by the BDNF receptor TrkB in the hippocampus and reduced depression-like behaviors in mice. The compounds CN2097 and Syn3 both bind to the PDZ3 domain of PSD-95, and Syn3 also binds to an α-helical region of the protein. Syn3 reduced depression-like behaviors in two mouse models of stress-induced depression; CN2097 had similar but less potent effects. In hippocampal neurons, application of Syn3 enhanced the formation of TrkB-Gαi1/3-PSD-95 complexes and potentiated downstream PI3K-Akt-mTOR signaling. In mice subjected to chronic mild stress (CMS), systemic administration of Syn3 reversed the CMS-induced, depression-associated changes in PI3K-Akt-mTOR signaling, dendrite complexity, spine density, and autophagy in the hippocampus and reduced depression-like behaviors. Knocking out Gαi1/3 in hippocampal neurons prevented the therapeutic effects of Syn3, indicating dependence of these effects on the TrkB pathway. The findings suggest that compounds that induce the formation of PSD-95-TrkB complexes have therapeutic potential to alleviate depression.


Brain-Derived Neurotrophic Factor , Depression , Disks Large Homolog 4 Protein , Hippocampus , Signal Transduction , Animals , Disks Large Homolog 4 Protein/metabolism , Disks Large Homolog 4 Protein/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Depression/metabolism , Depression/drug therapy , Signal Transduction/drug effects , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Male , Mice, Knockout , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mice, Inbred C57BL , Behavior, Animal/drug effects , Neurons/metabolism , Neurons/drug effects
8.
Neuropeptides ; 104: 102411, 2024 Apr.
Article En | MEDLINE | ID: mdl-38335799

Brain-derived neurotrophic factor (BDNF), one of the neurotrophins, and its specific receptor TrkB, are abundantly distributed in the central nervous system (CNS) and have a variety of biological effects, such as neural survival, neurite elongation, neural differentiation, and enhancing synaptic functions. Currently, there are two TrkB subtypes: full-length TrkB (TrkB-FL), which has a tyrosine kinase in the intracellular domain, and TrkB-T1, which is a tyrosine kinase-deficient form. While TrkB-FL is a typical tyrosine kinase receptor, TrkB-T1 is a main form expressed in the CNS of adult mammals, but its function is unknown. In this study, we performed fluorescent staining of the cerebral cortex of adult mice, by using TrkB-T1 antiserum and various antibodies of marker molecules for neurons and glial cells. We found that TrkB-T1 was expressed not only in neurons but also in astrocytes. In contrast, little expression of TrkB-T1 was found in oligodendrocytes and microglia. TrkB-T1 was expressed in almost all of the cells expressing TrkB-FL, indicating the direct interaction between TrkB subtypes. These findings suggest that a part of various functions of BDNF-TrkB signaling might be due to the interaction and cellular localization of TrkB subtypes in the cerebral cortex.


Brain-Derived Neurotrophic Factor , Cerebral Cortex , Neurons , Receptor, trkB , Animals , Mice , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/metabolism , Neurites/metabolism , Neuroglia/metabolism , Neurons/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism
9.
Biomolecules ; 14(1)2024 Jan 11.
Article En | MEDLINE | ID: mdl-38254691

The brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase receptor B (TrkB) are widely expressed in the central nervous system. It is well documented that neurons express BDNF and full-length TrkB (TrkB.FL) as well as a lower level of truncated TrkB (TrkB.T). However, there are conflicting reports regarding the expression of BDNF and TrkB in glial cells, particularly microglia. In this study, we employed a sensitive and reliable genetic method to characterize the expression of BDNF and TrkB in glial cells in the mouse brain. We utilized three Cre mouse strains in which Cre recombinase is expressed in the same cells as BDNF, TrkB.FL, or all TrkB isoforms, and crossed them to Cre-dependent reporter mice to label BDNF- or TrkB-expressing cells with soma-localized EGFP. We performed immunohistochemistry with glial cell markers to examine the expression of BDNF and TrkB in microglia, astrocytes, and oligodendrocytes. Surprisingly, we found no BDNF- or TrkB-expressing microglia in examined CNS regions, including the somatomotor cortex, hippocampal CA1, and spinal cord. Consistent with previous studies, most astrocytes only express TrkB.T in the hippocampus of adult brains. Moreover, there are a small number of astrocytes and oligodendrocytes that express BDNF in the hippocampus, the function of which is to be determined. We also found that oligodendrocyte precursor cells, but not mature oligodendrocytes, express both TrkB.FL and TrkB.T in the hippocampus of adult mice. These results not only clarify the expression of BDNF and TrkB in glial cells but also open opportunities to investigate previously unidentified roles of BDNF and TrkB in astrocytes and oligodendrocytes.


Brain-Derived Neurotrophic Factor , Neuroglia , Receptor, trkB , Animals , Mice , Astrocytes , Brain-Derived Neurotrophic Factor/genetics , Microglia , Oligodendroglia , Receptor, trkB/genetics
10.
Clin Exp Med ; 24(1): 10, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38240952

Tropomyosin receptor kinases (TRK) are attractive targets for cancer therapy. As TRK-inhibitors are approved for all solid cancers with detectable fusions involving the Neurotrophic tyrosine receptor kinase (NTRK)-genes, there has been an increased interest in optimizing testing regimes. In this project, we wanted to find the prevalence of NTRK fusions in a cohort of various histopathological types of early-stage lung cancer in Norway and to investigate the association between TRK protein expression and specific histopathological types, including their molecular and epidemiological characteristics. We used immunohistochemistry (IHC) as a screening tool for TRK expression, and next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) as confirmatory tests for underlying NTRK-fusion. Among 940 cases, 43 (4.6%) had positive TRK IHC, but in none of these could a NTRK fusion be confirmed by NGS or FISH. IHC-positive cases showed various staining intensities and patterns including cytoplasmatic or nuclear staining. IHC-positivity was more common in squamous cell carcinoma (LUSC) (10.3%) and adenoid cystic carcinoma (40.0%), where the majority showed heterogeneous staining intensity. In comparison, only 1.1% of the adenocarcinomas were positive. IHC-positivity was also more common in men, but this association could be explained by the dominance of LUSC in TRK IHC-positive cases. Protein expression was not associated with differences in time to relapse or overall survival. Our study indicates that NTRK fusion is rare in early-stage lung cancer. Due to the high level of false positive cases with IHC, Pan-TRK IHC is less suited as a screening tool for NTRK-fusions in LUSC and adenoid cystic carcinoma.


Carcinoma, Adenoid Cystic , Lung Neoplasms , Neoplasms , Male , Humans , Receptor, trkA/genetics , Receptor, trkC/genetics , Receptor, trkB/genetics , In Situ Hybridization, Fluorescence , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Neoplasm Recurrence, Local , Neoplasms/diagnosis
11.
FASEB J ; 38(1): e23351, 2024 01.
Article En | MEDLINE | ID: mdl-38085181

Heart failure (HF) is often accompanied by cognitive impairment (CI). Brain-derived neurotrophic factor (BDNF) deficiency is closely associated with CI. However, the role and mechanism of BDNF in HF with CI is still not fully understood. Here, the case-control study was designed including 25 HF without CI patients (HF-NCI) and 50 HF with CI patients (HF-CI) to investigate the predictive value of BDNF in HF-CI while animal and cell experiments were used for mechanism research. Results found that BDNF levels in serum neuronal-derived exosomes were downregulated in HF-CI patients. There was no significant difference in serum BDNF levels among the two groups. HF rats showed obvious impairment in learning and memory; also, they had reduced thickness and length of postsynaptic density (PSD) and increased synaptic cleft width. Expression of BDNF, TrkB, PSD95, and VGLUT1 was significantly decreased in HF rats brain. In addition, compared with sham rats, amino acids were significantly reduced with no changes in the acetylcholine and monoamine neurotransmitters. Further examination showed that the number of synaptic bifurcations and the expression of BDNF, TrkB, PSD95, and VGLUT1 were all decreased in the neurons that interfered with BDNF-siRNA compared with those in the negative control neurons. Together, our results demonstrated that neuronal-derived exosomal BDNF act as effective biomarkers for prediction of HF-CI. The decrease of BDNF in the brain triggers synaptic structural damage and a decline in amino acid neurotransmitters via the BDNF-TrkB-PSD95/VGLUT1 pathway. This discovery unveils a novel pathological mechanism underlying cognitive impairment following heart failure.


Cognitive Dysfunction , Heart Failure , Humans , Rats , Animals , Brain-Derived Neurotrophic Factor/metabolism , Amino Acids/metabolism , Case-Control Studies , Cognitive Dysfunction/metabolism , Receptor, trkB/genetics , Heart Failure/metabolism , Hippocampus/metabolism
12.
Genes (Basel) ; 14(11)2023 Nov 03.
Article En | MEDLINE | ID: mdl-38002980

Despite the increasing availability of antidepressant drugs, a high rate of patients with major depression (MDD) does not respond to pharmacological treatments. Brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling is thought to influence antidepressant efficacy and hippocampal volumes, robust predictors of treatment resistance. We therefore hypothesized the possible role of BDNF and neurotrophic receptor tyrosine kinase 2 (NTRK2)-related polymorphisms in affecting both hippocampal volumes and treatment resistance in MDD. A total of 121 MDD inpatients underwent 3T structural MRI scanning and blood sampling to obtain genotype information. General linear models and binary logistic regressions were employed to test the effect of genetic variations related to BDNF and NTRK2 on bilateral hippocampal volumes and treatment resistance, respectively. Finally, the possible mediating role of hippocampal volumes on the relationship between genetic markers and treatment response was investigated. A significant association between one NTRK2 polymorphism with hippocampal volumes and antidepressant response was found, with significant indirect effects. Our results highlight a possible mechanistic explanation of antidepressant action, possibly contributing to the understanding of MDD pathophysiology.


Depressive Disorder, Major , Humans , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Polymorphism, Genetic , Receptor, trkB/genetics
13.
Nature ; 623(7986): 366-374, 2023 Nov.
Article En | MEDLINE | ID: mdl-37914930

The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor1-3 (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors4,5. The consequent glioma cell membrane depolarization drives tumour proliferation4,6. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity7,8 and strength9-15. Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B16 (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity17-22 that contributes to memory and learning in the healthy brain23-26. BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.


Adaptation, Physiological , Glioma , Neuronal Plasticity , Synapses , Animals , Child , Humans , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Proliferation , Disease Progression , Glioma/metabolism , Glioma/pathology , Glutamic Acid/metabolism , Neurons/cytology , Neurons/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism , Receptors, AMPA/metabolism , Signal Transduction , Synapses/metabolism , Tumor Microenvironment , Optogenetics
14.
Cytokine Growth Factor Rev ; 71-72: 105-116, 2023.
Article En | MEDLINE | ID: mdl-37500391

Brain-derived neurotrophic factor (BDNF) plays an important role in the development of the central and peripheral nervous system during embryogenesis. In the mature central nervous system, BDNF is required for the maintenance and enhancement of synaptic transmissions and the survival of neurons. Particularly, it is involved in the modulation of neurocircuits that control energy balance through food intake, energy expenditure, and locomotion. Regulation of BDNF in the central nervous system is complex and environmental factors affect its expression in murine models which may reflect to phenotype dramatically. Furthermore, BDNF and its high-affinity receptor tropomyosin receptor kinase B (TrkB), as well as pan-neurotrophin receptor (p75NTR) is expressed in peripheral tissues in adulthood and their signaling is associated with regulation of energy balance. BDNF/TrkB signaling is exploited by cancer cells as well and BDNF expression is increased in tumors. Intriguingly, previously demonstrated roles of BDNF in regulation of food intake, adipose tissue and muscle overlap with derangements observed in cancer cachexia. However, data about the involvement of BDNF in cachectic cancer patients and murine models are scarce and inconclusive. In the future, knock-in and/or knock-out experiments with murine cancer models could be helpful to explore potential new roles for BDNF in the development of cancer cachexia.


Brain-Derived Neurotrophic Factor , Neoplasms , Animals , Humans , Mice , Brain , Brain-Derived Neurotrophic Factor/genetics , Cachexia , Energy Metabolism , Neoplasms/complications , Receptor, trkB/genetics , Receptor, trkB/metabolism
15.
Int J Mol Sci ; 24(11)2023 May 30.
Article En | MEDLINE | ID: mdl-37298449

In this article, we describe the effects of tail pinch (TP), a mild acute stressor, on the levels of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor B (trkB) proteins in the hippocampus (HC) of the outbred Roman High- (RHA) and Low-Avoidance (RLA) rats, one of the most validated genetic models for the study of fear/anxiety- and stress-related behaviors. Using Western blot (WB) and immunohistochemistry assays, we show for the first time that TP induces distinct changes in the levels of BDNF and trkB proteins in the dorsal (dHC) and ventral (vHC) HC of RHA and RLA rats. The WB assays showed that TP increases BDNF and trkB levels in the dHC of both lines but induces opposite changes in the vHC, decreasing BDNF levels in RHA rats and trkB levels in RLA rats. These results suggest that TP may enhance plastic events in the dHC and hinder them in the vHC. Immunohistochemical assays, carried out in parallel to assess the location of changes revealed by the WB, showed that, in the dHC, TP increases BDNF-like immunoreactivity (LI) in the CA2 sector of the Ammon's horn of both Roman lines and in the CA3 sector of the Ammon's horn of RLA rats while, in the dentate gyrus (DG), TP increases trkB-LI in RHA rats. In contrast, in the vHC, TP elicits only a few changes, represented by decreases of BDNF- and trkB-LI in the CA1 sector of the Ammon's horn of RHA rats. These results support the view that the genotypic/phenotypic features of the experimental subjects influence the effects of an acute stressor, even as mild as TP, on the basal BDNF/trkB signaling, leading to different changes in the dorsal and ventral subdivisions of the HC.


Brain-Derived Neurotrophic Factor , Tail , Animals , Rats , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism , Tail/metabolism
16.
Biomolecules ; 13(5)2023 05 02.
Article En | MEDLINE | ID: mdl-37238659

Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.


Brain-Derived Neurotrophic Factor , Brain , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Neuronal Plasticity/physiology , Central Nervous System/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism
17.
Biomolecules ; 13(5)2023 05 11.
Article En | MEDLINE | ID: mdl-37238691

The transcripts for Bdnf (brain-derived neurotrophic factor), driven by different promoters, are expressed in different brain regions to control different body functions. Specific promoter(s) that regulates energy balance remain unclear. We show that disruption of Bdnf promoters I and II but not IV and VI in mice (Bdnf-e1-/-, Bdnf-e2-/-) results in obesity. Whereas Bdnf-e1-/- exhibited impaired thermogenesis, Bdnf-e2-/- showed hyperphagia and reduced satiety before the onset of obesity. The Bdnf-e2 transcripts were primarily expressed in ventromedial hypothalamus (VMH), a nucleus known to regulate satiety. Re-expressing Bdnf-e2 transcript in VMH or chemogenetic activation of VMH neurons rescued the hyperphagia and obesity of Bdnf-e2-/- mice. Deletion of BDNF receptor TrkB in VMH neurons in wildtype mice resulted in hyperphagia and obesity, and infusion of TrkB agonistic antibody into VMH of Bdnf-e2-/- mice alleviated these phenotypes. Thus, Bdnf-e2-transcripts in VMH neurons play a key role in regulating energy intake and satiety through TrkB pathway.


Brain-Derived Neurotrophic Factor , Receptor, trkB , Satiety Response , Animals , Mice , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Hyperphagia/genetics , Hyperphagia/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Obesity/genetics , Obesity/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism
18.
Dig Liver Dis ; 55(12): 1757-1764, 2023 Dec.
Article En | MEDLINE | ID: mdl-37142453

Fused information from protein status, DNA breakage, and transcripts are still limited because of the low rate of activated-NTRK in colorectal cancer (CRC). In total, 104 archived CRC tissue samples with dMMR were analyzed using immunohistochemistry (IHC), polymerase chain reaction (PCR), and pyrosequencing to mine the NTRK-enriched CRC group, and then subjected to NTRK fusion detection using pan-tyrosine kinase IHC, fluorescence in situ hybridization (FISH), and DNA-/RNA-based next generation sequencing (NGS) assays. Of the 15 NTRK-enriched CRCs, eight NTRK fusions (53.3%, 8/15), including two TPM3(e7)-NTRK1(e10), one TPM3(e5)-NTRK1(e11), one LMNA(e10)-NTRK1(e10), two EML4(e2)-NTRK3(e14), and two ETV6(e5)-NTRK3(e15) fusions, were identified. There was no immunoreactivity for ETV6-NTRK3 fusion. In addition to cytoplasmic staining found in six specimens, membrane positive (TPM3-NTRK1 fusion) and nuclear positive (LMNA-NTRK1 fusion) were also observed in two of them. Atypical FISH-positive types were observed in four cases. Unlike IHC, NTRK-rearranged tumors appeared homogeneous on FISH. ETV6-NTRK3 may be missed in pan-TRK IHC screening for CRC. Regarding break-apart FISH, NTRK detection is difficult because of the diversity of signal patterns. Further research is warranted to identify the characteristics of NTRK-fusion CRCs.


Colorectal Neoplasms , Receptor, trkA , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Colorectal Neoplasms/genetics , DNA , Immunohistochemistry , In Situ Hybridization, Fluorescence , Receptor, trkA/genetics , Receptor, trkA/analysis , Receptor, trkB/genetics , Receptor, trkC/genetics
19.
Int J Mol Sci ; 24(9)2023 May 01.
Article En | MEDLINE | ID: mdl-37175826

As a means of environmental enrichment, music environment has positive and beneficial effects on biological neural development. Kunming white mice (61 days old) were randomly divided into the control group (group C), the group of D-tone (group D), the group of A-tone (group A) and the group of G-tone (group G). They were given different tonal music stimulation (group A) for 14 consecutive days (2 h/day) to study the effects of tonal music on the neural development of the hippocampus and prefrontal cortex of mice in early life and its molecular mechanisms. The results showed that the number of neurons in the hippocampus and prefrontal cortex of mice increased, with the cell morphology relatively intact. In addition, the number of dendritic spines and the number of dendritic spines per unit length were significantly higher than those in group C, and the expressions of synaptic plasticity proteins (SYP and PSD95) were also significantly elevated over those in group C. Compared with group C, the expression levels of BDNF, TRKB, CREB, PI3K, AKT, GS3Kß, PLCγ1, PKC, DAG, ERK and MAPK genes and proteins in the hippocampus and prefrontal cortex of mice in the music groups were up-regulated, suggesting that different tones of music could regulate neural development through BDNF and its downstream pathways. The enrichment environment of D-tone music is the most suitable tone for promoting the development of brain nerves in early-life mice. Our study provides a basis for screening the optimal tone of neuroplasticity in early-life mice and for the treatment of neurobiology and neurodegenerative diseases.


Brain-Derived Neurotrophic Factor , Brain , Music , Animals , Mice , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Neuronal Plasticity/physiology , Receptor, trkB/genetics , Receptor, trkB/metabolism
20.
PLoS One ; 18(3): e0282566, 2023.
Article En | MEDLINE | ID: mdl-36893171

BTBR T+ Itpr3tf/J (BTBR) mice are used as a model of autism spectrum disorder (ASD), displaying similar behavioral and physiological deficits observed in patients with ASD. Our recent study found that implementation of an enriched environment (EE) in BTBR mice improved metabolic and behavioral outcomes. Brain-derived neurotrophic factor (Bdnf) and its receptor tropomyosin kinase receptor B (Ntrk2) were upregulated in the hypothalamus, hippocampus, and amygdala by implementing EE in BTBR mice, suggesting that BDNF-TrkB signaling plays a role in the EE-BTBR phenotype. Here, we used an adeno-associated virus (AAV) vector to overexpress the TrkB full-length (TrkB.FL) BDNF receptor in the BTBR mouse hypothalamus in order to assess whether hypothalamic BDNF-TrkB signaling is responsible for the improved metabolic and behavioral phenotypes associated with EE. Normal chow diet (NCD)-fed and high fat diet (HFD)-fed BTBR mice were randomized to receive either bilateral injections of AAV-TrkB.FL or AAV-YFP as control, and were subjected to metabolic and behavioral assessments up to 24 weeks post-injection. Both NCD and HFD TrkB.FL overexpressing mice displayed improved metabolic outcomes, characterized as reduced percent weight gain and increased energy expenditure. NCD TrkB.FL mice showed improved glycemic control, reduced adiposity, and increased lean mass. In NCD mice, TrkB.FL overexpression altered the ratio of TrkB.FL/TrkB.T1 protein expression and increased phosphorylation of PLCγ in the hypothalamus. TrkB.FL overexpression also upregulated expression of hypothalamic genes involved in energy regulation and altered expression of genes involved in thermogenesis, lipolysis, and energy expenditure in white adipose tissue and brown adipose tissue. In HFD mice, TrkB.FL overexpression increased phosphorylation of PLCγ. TrkB.FL overexpression in the hypothalamus did not improve behavioral deficits in either NCD or HFD mice. Together, these results suggest that enhancing hypothalamic TrkB.FL signaling improves metabolic health in BTBR mice.


Autism Spectrum Disorder , Autistic Disorder , Noncommunicable Diseases , Animals , Mice , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Hypothalamus/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains , Receptor, trkB/genetics , Receptor, trkB/metabolism
...